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Abstract. The internal spatial distributions of self-avoiding hard sphere sequences are 
determined for terminally attached and free-floating systems confined between two rigid 
boundaries of variable attraction and separation. In all cases the terminally attached 
distributions are characterised by a pronounced density discontinuity and internal structure, 
whilst the free-floating sequences form either mono- or biglobular coils, depending upon 
the details of attraction, temperature and boundary separation. The role of entropic and 
van der Waals contributions to the structure and excess free energy are clearly resolved, 
and their implications for colloidal stability against flocculation discussed. The mean square 
molecular span and centre of gravity are also determined as a function of chain length, 
interaction strength and boundary separation. 

1. Introduction 

In a previous series of papers (Croxton 1979a, b, c, hereafter referred to as I, I1 and 
III), a diagrammatic convolution approximation to the excluded volume problem in 
polymer chains was developed which, for relatively short sequences ( N  G 20), exhibited 
what was believed to be the correct qualitative behaviour for such systems. Subsequent 
investigations by other workers (e.g. Redner 1980) have confirmed in detail the 
conclusions drawn in that series of investigations. The qualitative effect of approxima- 
tion in the model was readily assessable in terms of a progressive underassessment of 
the exclusion processes operating within the chain with increasing length. Here, to 
the same degree of approximation, we extend the analysis to the problem of a perfectly 
flexible chain of hard sphere segments confined between two rigid boundaries, one or 
both of which may be attractive, whilst the chain itself is either free-floating or terminally 
attached to one of the boundaries. At each stage we make a direct comparison with 
the random walk result which allows us to form a qualitative assessment of the nature 
and function of excluded volume processes operating within the chain, albeit partial 
in the present approximation. We investigate the segment density of the N-mer 
~ ( Z I N ) ~  along the normal z to the boundary as a function of the fixed separation 6 
(defined below) of the two boundaries, and the results are discussed in the context of 
stability against flocculation of colloidal systems. 

We point out that analytic and exact enumeration analyses of self-avoiding 
sequences in the vicinity of a rigid boundary based on a discrete regular lattice 
necessarily embody a mapping relating the continuous and discrete distributions. 
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However, in the course of the mapping, essential qualitative features of the continuous 
distribution are forfeited: the continuous and discrete distributions are fundamentally 
distinct and bear no simple relationship to each other, and some reappraishl of the 
role of lattice-based representations of self-avoiding sequences may be necessary. 
Nevertheless, comparisons of the present convolution results are made with the lattice- 
based analyses, for whilst the spatial distributions are quite distinct, conformationally 
averaged quantities are somewhat less sensitive to the details of the distribution 
functions, and to that extent bear comparison with the continuum results reported here. 

It should be appreciated that it is not our intention to describe the behaviour of 
asymptotically long sequences, although the initial features associated with self avoid- 
ance should already be apparent for chains of intermediate length such as those 
considered here. This does not preclude comparison with the various exponent rela- 
tions, however, although estimates of their limiting behaviour as N + CO are clearly 
inappropriate. More important is a demonstration of the versatility and simplicity of 
the model, and its ability to make qualitative predictions of the properties of short to 
intermediate self-avoiding sequences with readily assessable physical approximations. 
Comparisons will be made with a continuum Monte Carlo analysis of a 12-segment 
sequence. 

The approach of a chain towards a rigid boundary, in particular its conformational 
modification and development of structural features, is a problem of considerable 
interest in a wide variety of chemical and biophysical applications, but has received 
relatively little attention in the literature. Accordingly, here we concentrate on the 
determination of the confined distributions Z(N),. We also investigate the mean 
square molecular span ( R k ) ,  as a function of both S and the number of segments N. 
Another important configurational quantity determined is the location of the centre 
of gravity of the chain, for  both terminally attached and free-floating sequences. These 
quantities will be compared with other reported determinations. As the chain 
approaches the boundary, the geometrical constraint ensures that the number of 
accessible conformations decreases and an estimate is made of the conformational 
decrease in entropy of the system as the boundary is approached. This ‘entropic 
pressure’ may be interpreted in terms of an effective repulsion exerted by the boundary 
on the chain and a comparison with its random walk counterpart will be made. 

2. The model 

In two previous papers ( I ,  11) the internal spatial distributions Z ( l i l l N ) ,  Z(ij/lN) of 
the pairs of segments l i ,  i j  in a chain of 1 . . . N interacting segments were determined 
on the basis of a diagrammatic convolution approximation, as were the end-to-end 
distributions Z (  1N). In this treatment certain of the internal interactions are neglected, 
enabling the properties of longer sequences to be determined on the basis of convolu- 
tions of properties of shorter chains and enabling us to exploit fast Fourier transform 
techniques for their numerical evaluation. Whilst no adequate account of the excluded- 
volume problem has been given, the present approximation unambiguously represents 
an almost fully self-interacting chain whose qualitative status is intermediate between 
that of the random walk model and the fully self-interacting systems, although much 
more closely that of the latter. The approximation is of a physical rather than a 
mathematical nature, and as such enables us to form bounded estimates of the various 
configurational features of the chain. 
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In papers I and I1 the internal distributions Z ( j N ( l N ) ,  Z(i j1lN) in a hard sphere 
sequence of N segments are given as 

Z ( j N I l N ) = Z ( j N I l N )  [ Z ( l i 1 1 , N - l ) H ( l N ) d l  ( 1 )  

Z(ij1lN) = Z ( i j [ I ,  N 

where H is the function 

H (  i j )  = exp[-@( r i j ) ] .  

J 

1 )  Z (  jN12N)H( iN) d N  

@(r i i )  is the reduced intersegmental pair interaction (in units of kT) and rij the 
intersegmental separation. 

We consider both athermal (hard-sphere) and non-athermal (van der Waals attrac- 
tion) interaction with the plane. Thus, in the athermal case, we have in an obvious 
notation 

@( r i j )  = + CO rij s 4( a, + uj) 

r, > $(Ui + uj) = O  
(3) 

where a,, ai are the i ,  j segment diameters. The H function then adopts the form of 
a step function, confining the chain to the region S between the two boundaries: 

H (  l j )  = 0 rl s 4( u, + ai) 3 s +4( a1 + uj) 

= 1  r l j  > $(a1 +aj). 
(4) 

In the non-athermal case we take the chain to be an athermal self-avoiding sphere 
sequence of (2 , .  . . , N) segments, each one of which interacts with the plane through 
an attractive van der Waals function; thus 

segment-segment 

@ ( i j )  =+CO r s $( ai + ai) 

= O  r> t (a i+u, )  ( i # j > l )  

segment-plane 

@ ( l i )  = - E * ( a l r / r 1 1 ) 6  (i32) 

where E *  is a reduced van der Waals interaction parameter. Five values of E *  were 
investigated ( E *  = 0,0.5, 1 , 2 , 5 )  representing progressively more attractive chain- 
plane interaction, whilst the geometrical features of hard sphere exclusion are preserved 
within the chain itself. 

Sequential order and intersegmental separations are established by the specification 
of delta-function bonds between adjacent segments within the chain; equations ( 1 )  
and ( 2 )  implicitly contain these sequential ordering bonds (see paper I). The effect 
of a plane boundary is simply achieved by allowing the diameter of the first hard 
sphere segment a1 + CO; in practice we have studied the development of the distributions 
over the range u1 = 1 + 64, and have found (Croxton 1981) that the asymptotic forms 
of the distributions are rapidly achieved with increasing diameter ul. The remainder 
of the chain (2,. . . , N )  is confined within the region S. Z ( l i l l N ) 8  then represents 
the spatial distribution of the ith segment in an N-mer normal to the boundary for a 
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given fixed range of chain confinement S (figure 1). Moreover, the sum of the 
normalised component distributions 

N 

, = 2  

represents the segment density normal to the surface of segment 1 for a chain sequence 
(2, .  . . , N )  given the fixed boundary separation S .  

For the calculation of the chemical potential of the chain we shall require the 
unnormalised configurational sum 

A clear distinction must be drawn between the various distributions and parameters 
used in the specification of the conformation of the chain: these are illustrated in figure 
1. Principally it should be recognised that the true chain consists of the sequence 
( 2 , .  . . , N )  (i.e. N -  1 segments), whilst the first segment adopts the role of a ‘planar’ 
boundary. 

Figure 1. Geometry of the polymer-boundary systems and associated internal distributions 
Z(ijllN)8, The plane boundary configuration is achieved as U, + %. 

The hierarchial series of linked equations ( I I ,6  and ( I I ,9 )  may be readily evaluated 
by fast Fourier transform techniques, and describe the cumulatiue interference of 
successive segments with the preceding sequence. We emphasise that the number of 
bonds or interactions omitted in this approximation at least in the specification of 
p ( ~ l N ) ~  and A N  is quite small for short to intermediate length chains. In the case of 
the end-to-end distributions, however, it should be noted that with increasing chain 
length N the fraction of neglected internal interactions increases: in other words the 
system tends towards the random walk result. However, for the sequence lengths 
under consideration here the role of excluded-volume effects is found to be substantial 
and accordingly we restrict our computations to chains up to 15 segments in length 
( N  = 16). 

The random flight system is described exactly as a convolved sequence of uncorre- 
lated bonds of fixed length, these representing the fixed step lengths of the random 
walk. The present model yields an exact description of random flight sequences when 
we set the interaction H ( i j )  = 1 ,  corresponding to the complete absence of exclusion. 
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Comparison of analytic and the present numerical estimates for random flight quantities 
such as mean square end-to-end distances and radii of gyration agree to  eight decimal 
places for isolated (free chain) sequences: This provides an assessment of the minimal 
numerical error engendered in the repeated convolutions for chains N s 20. We  
therefore make extensive comparison of the self-avoiding and random walk estimates 
at the rigid boundary, and believe the comparison to be.significant from the point of 
view of the role of geometric processes operating within the system. 

3. Results 

3.1. Terminally attached sequences 

The segment density distribution p (  for a terminally attached chain (segment 
2 in contact with 1) has been determined (Croxton 1981) for a range of vl= 
1, 1 6 , 3 2 , 6 4 ;  E *  = 0 on the basis of which we conclude that the qualitative form of the 
v1 = 64, E *  = 0 distribution is essentially that of the plane boundary problem corres- 
ponding to  v1 = E. Accordingly, we set v1 = 64  throughout all subsequent computa- 
tions, We  point out that these observations relate t o  essentially geometrical effects, 
and remain unmodified by the subsequent application of an attractive chain-plane 
interaction. Nevertheless, it must be said that notwithstanding the use of a relatively 
large diameter U , ,  the volume elements in the region S accessible to the chain retain 
conical rather than cylindrical symmetry. The  consequences of these differing sym- 
metries are readily apparent from a consideration of the terminally attached distribution 
Z( 13)6=15. This function may be determined analytically and shown to  be a rectangular 
function at a plane boundary: 

Z(13) = 1 2s 1.0 

= O  2 > 1.0. 

Since Z ( 2 3 )  is simply a delta function centred on the terminally attached segment 2, 
the form of Z ( 1 3 )  is reflected directly in the segment density distribution ~ ( 2 1 1 3 )  
(equation (5)). (The absence of a second boundary is understood in dropping the S 
subscript.) We  find that the effect of conical rather than cylindrical symmetry is 
apparent, but slight. We  shall draw the reader’s attention to  the effects of symmetry 
as and when they arise. 

In figure 2 we compare the Monte Carlo and convolution distributions for a 
terminally attached sequence of 12 hard sphere segments. The qualitative agreement 
is seen to be good-the discontinuity and development of secondary structure being 
particularly pronounced in both cases. The convolution distribution is seen to be 
somewhat collapsed with respect to the Monte Carlo, and this is attributed to the 
partial neglect of intrachain interference in the model. Nevertheless, the qualitative 
features a re  preserved and differ markedly from all previously reported determinations. 
It is clear that the structural features are not artefacts of the convolution approximation, 
the numerical process, o r  the effects of conical rather than cylindrical symmetry. The  
fact that other lattice-based analyses do  not reproduce these features is simply evidence 
of the incommensurability of continuous distributions with those mapped into a discrete 
space. It is found that at  all orders N 2 4 the density distribution is structured, showing 
in particular a cliscontinuity associated with the accessible volume of the segment 
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Figure 2. Comparison of the MC distribution ~ ( 2 1 1 2 )  and the distribution obtained on the 
basis of the convolution approximation; the qualitative agreement appears good. In this 
and subsequent figures, z represents radial distance measured from the centre of sphere 1. 

immediately adjacent to that which is terminally attached. As the length of the chain 
increases a second layer appears to develop and for the longest chains, an inflection, 
possibly indicating the development of a third, weakly resolved layer. This is confirmed 
in detail by Monte Carlo simulation. It is perhaps appropriate to mention at this point 
that the whole Monte Carlo sequence was generated anew if any violation of the 
exclusion condition occurred. Only in this way will the lower-order internal distribu- 
tions modify their form in the presence of subsequent segments with which the initial 
segments have to compete for occupancy in the vicinity of the boundary. 

The striking discontinuity in the segment density distribution associated with 
Z(1311N) warrants further comment. First of all we point out that Z(1311N) is 
sensitively dependent upon the number of subsequent segments in the chain. Thus, 
the terminally attached two-segment sequence Z( 13113) may be shown analytically 
(discussed above) to be a rectangular function, closely reproduced in the present 
approximation. With increasing length, however, Z (  1311 N) shows a rapid increase in 
the amplitude of the discontinuity at z = 1, clearly apparent from a breakdown of the 
component normalised distributions of the segment density. We shall return to this 
point later. We see that Z( 1311N) is responsible for the principal peak and discontinuity 
in structure for all terminally attached sequences, whilst the higher-order distributions 
are responsible for the secondary structure-each of the component distributions 
themselves being essentially structureless. Not surprisingly, the higher-order segments 
are responsible for the long-range form of the density distribution. Another interesting 
feature is the increasing contact probability of a given segment with the boundary as 
N + 16. 

The exact random walk distributions are found to be relatively less structured, 
although the discontinuity associated with segment 3 persists of course, being an 
inevitable consequence of the fixed intersegmental separation r23. In particular, the 
principal peak associated with the first layer of segments adjacent to the plane is less 
well resolved in the random walk case; however, the fixed intersegmental separation 



Conformational properties of polymer chains 4349 

ri, i+l establishes the broad features of the distribution in both cases. A numerical 
comparison of the two structures may be given in terms of the boundary excess free 
energy which, in the present case, represents a measure of the entropy of the chain. 
The quantity 

/.L,w-l=(N-1)-l(ln AN(a) - ln  AN(8)) (7)  

is calculated both for terminally attached and free-floating sequences as a function of 
boundary separation 6, and these are shown for chains of 7 and 15 segments in figure 
3. The consistently higher entropy of the random walk sequences is directly attributable 
to the excluded-volume processes operating within the hard sphere chain. 

6 

Figure 3. Development of the boundary excess free energy for terminally attached chains 
as a function of decreasing interplane separation 6 (full curve). The corresponding random 
walk results are also shown (broken curve). E * = O .  

The rapid increase in /.L as the chain is closely confined may be regarded as an 
entropic repulsion arising from the progressive configurational suppression of accessible 
chain conformations. This essentially geometrical effect would have to be overcome by 
attractive surface-segment interactions before substantial surface adsorption can take 
place. On the basis of this steric repulsion at the boundary we anticipate that the 
incorporation of excluded-volume effects will provide an additional expansion of the 
density distribution at the boundary with respect to the random walk result. 

We are now in a position to account for the detailed structure of the density 
distribution curves, for whilst the discontinuity associated with the third segment is 
attributed to geometrical effects at the boundary and sequential constraint, the very 
strong increase in amplitude of the normalised distribution Z(1311N) at z = 1 with 
increasing chain length N has an essentially entropic origin, although this N dependence 
may be alternatively and equivalently understood in terms of a systematic increase in 
competition between the third and subsequent segments for the free volume in the 
immediate vicinity of the plane. We have mentioned that the chain experiences an 
effective entropic repulsion in the vicinity of the rigid boundary, and it follows that 
segments N Z 4  will be expelled from the immediate vicinity of the plane, subject of 
course to the maintenance of sequential connection of the chain, and in so doing 
progressively distort the Z(1311N) distribution from its rectangular form for N = 3 
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to the highly asymmetric forms for N 2 4 .  However, we should point out that the 
Monte Carlo discontinuity, whilst pronounced, does not appear t o  grow as strongly, 
and a decision as to whether this is an artefact of the convolution awaits simulation 
of more extended sequences. It does appear that the details of the discontinuity and 
its development with N becomes harder to resolve for longer chain lengths and for 
increasing chain-plane attraction (see below). Indeed, the discontinuity has not pre- 
viously been reported on the basis of exact enumeration and Monte Carlo studies on 
regular lattices and so results based on these analyses should be treated with some 
caution. 

These results bear immediate comparison with the terminally attached density 
profiles reported by Roe  (1965) for a 1000 segment chain with no excluded volume, 
but a weak attractive interaction with a rigid boundary. These calculations, based 
upon an application of a generating function method, show that the segment density 
distribution maximises some distance away from the boundary, after which it decays 
monotonically to zero. Qualitatively similar conclusions were reached by Dickinson 
and La1 (1980) and Clark and La1 (1981) for the segment density profile of a 
100-segment Monte Carlo chain on a tetrahedral lattice. Despite the incorporation 
of self avoidance in the latter calculation, there appears to be no evidence of structure 
in the vicinity of the plane even for non-attractive systems under the closest interplane 
confinements. However, as we shall see, the presence of an attractive interaction to 
some extent masks the discontinuity, although some reappraisal of these lattice results 
as a model of a self-avoiding sequence may well be necessary. 

Four values of the reduced attractive interaction (e* = E /  kT = 0.5, 1 , 2 , 5 )  were 
investigated, representing progressively more attractive chain-plane interaction, whilst 
the geometrical features of hard sphere exclusion a re  preserved within the chain itself. 
Substantial conformational modification of the sequences prior t o  geometrical contact 
with the plane is anticipated on account of the long-range chain-plane interaction. In 
this respect the conformational properties may be expected to differ from those of a 
hard sphere chain interacting with a rigid plane. 

We  present the results for e*  = 5 as being representative of the system, although 
we make a number of comparisons with the entire range of interaction parameters 
investigated. In figure 4 we show the development of the segment density distribution 

I I 

for a terminally attached sequence of hard sphere 2 -  \ I t l 1  t 

L i  Figure 4. The segment densit) distribution p (  z lN)  

segments subject to ( a )  zero ( E *  = 0 )  and ( b )  strong 
boundary attraction ( E *  = 5 )  The segments are 
effectively confined to within 2 5 segment diameters 
of the boundary 

I I 

1 .A 
1 2 3  

z (U1  
0 1  1 2  1 2 3  

\_[ , \  
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p ( z l N )  for a terminally attached chain of N = 2 , .  . . , 15 segments for E *  = 5. We 
observe that the chain is strongly adsorbed in a largely unstructured layer of little 
more than one segment diameter thickness, and differs essentially from the athermal 
case. Certainly the probability of finding segments of the chain beyond 2.5 segment 
diameters is virtually zero. We note the progressive relaxation of the distribution as 
E* decreases with an associated resolution of the component Z( 1311N) discontinuity 
as noted earlier in the athermal case. 

We also calculate the segmental boundary excess free energy for terminally attached 
chains with decreasing 6 (equation (7)). The entropic repulsion associated with the 
geometrical constraint imposed upon the hard sphere chain is shown in figure 3 for a 
sequence of 7 and 15 segments, and is seen to inhibit adsorption of terminally attached 
sequences for all boundary separations. The effect of attraction to one of the planes 
is to partially offset the steric repulsion, permitting a closer approach, but is never 
sufficient for the range of attractions investigated to initiate flocculation. 

3.2. Free-floating sequences 

We now consider hard sphere self-avoiding sequences which are no longer terminally 
attached, but are able to float freely between the two rigid boundaries of separation 
6. In figure 6 ( a )  we show density distributions for sequences of various lengths for 
6 = 5,15 .  As a priori considerations would suggest in the absence of any attraction, 
the segment density maximises midway between the planes. Any deviation from 
symmetry may be attributed to the conical symmetry of the volume element, discussed 
earlier. In figure 6( b )  the density distribution for N = 16 as a function of 6 is shown. 
The most striking feature of these distributions is the complete absence of any internal 
structure, which serves to confirm our earlier association of the discontinuity in 
terminally attached chains with the geometrical interaction of the third segment with 
the rigid boundary, and the constraint of sequential order. 

The boundary excess free energy for a free floating chain attracted to one surface 
as a function of interboundary separation S shows the same qualitative behaviour as 
that for terminally attached chains (figure 5 ) .  In fact, the excess free energy defined 
in equation (7) for given N, E* is somewhat greater in the case of free-floating chains 
since the fractional reduction in configuration freedom is greater than for one which 
is terminally attached. Thus, both terminally attached and free-floating sequences 
serve to inhibit flocculation for the range of attractions (or indeed, reduced tem- 
peratures) considered here. It should be mentioned, however, that for the shortest 
chains (3, 4, 5 segments) a shallow minimum in the free energy curve is observed. 
This is attributed to the ability of these very localised sequences to lie wholly within 
the long-range attractive region of the interaction, and largely evade the entropic 
repulsion associated with the boundaries, at least for large separations 6. Of course, 
with increasing N, E *  and decreasing 6, entropic effects associated with the boundaries 
dominate, and the colloidal suspension is again stabilised. As we shall see below, for 
terminally attached sequences which experience the full effect of entropic repulsion 
associated with the boundary, the excess free energy curve increases monotonically 
with confinement (decreasing 61, even for the shortest chains, just as we might expect 
on the basis of our earlier argument. 

Quite the reverse occurs if the chain experiences attraction t o  both boundaries, 
that is if we set 



4352 C A  Croxton 

E'.O l u )  , 

Figure 5. Development of the boundary excess free energy for terminally attached and 
free-floating chains for ( a )  single attractive and ( 6 )  double attractive boundary as a function 
of decreasing interplane separation S .  The full curves denote N = 8 and the broken curves 
N = 16. 

N.16 

10 
~ 

5 1 

N=16 6:5 
I 

7 
4 0 2 4 6 8 10 12 14  

z ( U )  I '> t i ', 

z l u l  

Figure 6. ( a )  Density distributions ~ ( Z I N ) ~  for 
various free-floating chain ( E *  = 0 )  lengths N and 
non-attractive boundary separations S = 5, 15. ( b )  
Free-floating density distribution for a 15-segment 
chain as a function of non-attractive boundary separ- 
ation S. 
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corresponding to an equal attraction to each boundary. In this case the repulsive 
entropic effects associated with geometrical chain-plane interaction are sufficiently 
offset by the attraction to cause the globular density distribution to broaden, and for 
sufficiently large E *  and 6 to become adsorbed on to one or other of the boundaries, 
or even to split into two separate components. Much more striking is the form of the 
boundary excess free energy (figure 5). At large distances the attractive force always 
dominates the short-range repulsive entropic component, but we see that for E *  = 5 
strong flocculation or adsorption of the polymer will occur, whilst for weaker attractions 
a looser association will develop in which it is centred on the minimum of the curve. 
This is in qualitative agreement with a numerical analysis by Dolan and Edwards 
(1974), subsequently solved analytically by Gerber and Moore (1977) under near-theta 
conditions corresponding here to O <  E * <  1. A recent Monte Carlo analysis for 
free-floating self-avoiding tetrahedral walks by Clark and La1 (1981) suggests that for 
close confinements the system is totally destabilised, even for non-attractive interac- 
tions, steric repulsion vanishing as the chains escape from between the boundaries and 
bulk osmotic pressure forces them together. In common with the majority of other 
investigations, we assume that the chains are trapped between the colloidal particles, 
and our results are not therefore immediately comparable with Clark and Lal’s analysis. 
It should, perhaps, be pointed out that the form of the boundary excess free energy 
curves for all E < 0 depends upon the amplitude rather than gradient of the attractive 
interaction. For sufficiently short-range attractions it is conceivable that the entropic 
repulsion arising from steric effects can lead to a weak positive maximum in the free 
energy at small offset distances from the boundary. However, the qualitative features 
reported here characterise interactions with exponents in the range 3-6, and the values 
of E *  indicated. 

3.3. Mean square molecular span 

The variation of mean square molecular span (R:N)6  with with N, 6 and E *  was 
determined for both free-floating and terminally attached sequences, and for single 
and double boundary attraction. 

For 6 = 1, the segments are effectively confined to a two-dimensional self-avoiding 
walk between the boundaries, whereupon ( R : N )  is independent of interaction strength 
E * .  On the other hand, with increasing attraction to one boundary ( 6  = 15, E *  = 5) 
the system exhibits the kind of qualitative behaviour we might expect a priori, that is 
lateral spreading across the attractive boundary akin to the highly constrained (6 = 1) 
behaviour mentioned above. This behaviour is substantially retarded in the case of 
the attraction to both boundaries. In all cases the transition of (R:N)s  from its 
two-dimensional behaviour varies continuously as N > 6 2 1. Unfortunately we cannot 
determine the asymptotic value of the exponent relating (R&N)6  as N+cc since the 
present model degenerates to the random walk result as self-interference effects within 
the chain are progressively omitted. 

In the case of sequences which are attracted to the plane to which they are terminally 
attached, their behaviour is essentially identical to those of free-floating chains, except 
that they are consistently expanded with respect to the latter. 

More interesting, perhaps, is the location of the centre of gravity of the chain 
midway between the two attractive boundaries for the entire range of interaction 
parameters studied. As we have mentioned, the globule ranges in form from spheroidal 
(prolate and oblate) to dumbbell shaped; the moments of inertia and associated light 
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scattering properties of these various distributions would vary enormously and should 
be experimentally accessible, particularly as a function of temperature. 

4. Conclusions 

We find that for terminally attached partially self-avoiding chains of length up to 15 
segments interacting with a rigid boundary, the system develops pronounced structural 
features. The most striking feature is the discontinuity in the density profile which 
may be directly attributed to the distribution of the third segment relative to the 
second; the segment density p(z113) may be shown analytically to be a rectangular 
function with a discontinuity at z = 1. The amplitude of the discontinuity develops 
strongly with the addition of subsequent segments, and may be associated with entropic 
forces acting on the body of the sequence ( N  2 4). The discontinuity itself, however, 
remains wholly attributable to the distribution of the third segment. 

Analogous calculations for random walk sequences exhibit the same discontinuity, 
but are otherwise substantially less structured, a result confirmed by calculating the 
entropy deficiency developed by the self-avoiding and random chains as the boundary 
is approached. These results bear immediate comparison with previous lattice-based 
determinations based on exact enumeration, analytic and Monte Carlo calculations. 
In all cases the distributions show a pronounced maximum followed by a monotonic 
decay, although these calculations are for substantially longer sequences, and appear 
to show no internal structure. As we mentioned in § 1, there are grounds for seriously 
questioning the results of lattice-based analyses embodying as they do an implicit 
mapping of the continuum distribution onto a discrete lattice. It does not appear easy 
to devise a mapping which does not imply strongly biased transitions on a regular 
lattice and preserves the non-directed features of the perfectly flexible self-avoiding 
continuum sequence. 

In the case of purely geometrical interaction with the plane ( E *  = 0) both terminally 
attached and free-floating chains exert an entropic repulsion on the planes directly 
attributable to the reduction in accessible conformations of the chain. In the context 
of colloidal suspensions these systems are stabilised against flocculation. 

If the sequence is attracted to  only one plane, the stabilising effect is reduced and 
appears quite sensitively dependent upon temperature and chain length. However, 
when attracted to both planes, the polymer acts to stabilise the system at high 
temperatures (small E * )  and to destabilise at low temperatures (large E * ) ,  at least for 
chains of intermediate length. We conclude that flocculation will occur as the tem- 
perature is reduced. These results are in almost exact numerical agreement with recent 
exact enumeration studies by Middlemiss e? a1 (1977). 

Chan et a1 (1976) have considered a continuum model of a polymer confined 
between two attractive planes, but ignore excluded-volume effects. They find that the 
force exerted on the polymer changes from being purely repulsive to purely attractive 
as a function of E * .  Here, we find a range of E *  for which there is a minimum in the 
free energy curve, in agreement with the results of Middlemiss et al. This result 
reinforces the speculation of the latter authors that the minimum is associated with 
excluded-volume processes operating within the chain. 

Finally we observe that the present simple model provides a sound qualitative 
description of polymeric systems of short to intermediate length. The versatility, 
simplicity and clear physical approximations involved in the model have been illustrated 
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in a recent series of papers. Extensions of the model to more complex situations of 
biophysical interest are to be published shortly. 
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